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Abstract. Tree-structured models have been widely used for human pose
estimation, in either 2D or 3D. While such models allow e�cie nt learn-
ing and inference, they fail to capture additional dependencies between
body parts, other than kinematic constraints. In this paper , we consider
the use of multiple tree models, rather than a single tree model for hu-
man pose estimation. Our model can alleviate the limitation s of a single
tree-structured model by combining information provided a cross di�erent
tree models. The parameters of each individual tree model are trained via
standard learning algorithms in a single tree-structured m odel. Di�erent
tree models are combined in a discriminative fashion by a boosting pro-
cedure. We present experimental results showing the improvement of our
model over previous approaches on a very challenging dataset.

1 Introduction

Estimating human body poses from still images is arguably one of the most
di�cult object recognition problems in computer vision. Th e di�culties of this
problem are manifold { humans are articulated objects, and can bend and contort
their bodies into a wide variety of poses; the parts which make up a human �gure
are varied in appearance (due to clothing), which makes themdi�cult to reliably
detect; and parts often have small support in the image or areoccluded. In order
to reliably interpret still images of human �gures, it is lik ely that multiple cues
relating di�erent parts of the �gure will need to be exploite d.

Many existing approaches to this problem model the human body as a com-
bination of rigid parts, connected together in some fashion. The typical con�g-
uration constraints used are kinematic constraints between adjacent parts, such
as torso-upper half-limb connection, or upper-lower half-limb connection (e.g.
Fig. 1). This set of constraints has a distinct computational advantage { since
the constraints form a tree-structured model, inferring the optimal pose of the
person using this model is tractable.

However, this computational advantage comes at a cost. Simply put, the
single tree model does not adequately model the full set of relationships between
parts of the body. Relationships between parts not connected in the kinematic
tree cannot be directly captured by this model.



In this paper, we develop a framework for modeling human �gures as a col-
lection of trees. We argue that this framework has the advantage of being able to
locally capture constraints between the parts which constitute the model. With
a collection of trees, a global set of constraints can be modeled. In our work,
these constraints are spatial constraints, but this framework could be extended
to other cues (e.g. color consistency, occlusion relationships). We demonstrate
that the computational advantages of tree-structured models can be kept, and
provide tractable algorithms for learning and inference in these multiple tree
models.

The rest of this paper is organized as follows. Section 2 reviews previous work.
Section 3 gives the details of our approach. Section 4 shows some experimental
results. Section 5 concludes this paper and points to some future work.

2 Related Work

One of the earliest lines of research related to �nding people from images is
in the setting of detecting and tracking pedestrians. Starting with the work of
Hogg [4], there have been a lot work done in tracking with kinematic models in
both 2D and 3D. Forsyth et al. [3] provide a survey of this work.

Some of the these approaches are exemplar-based. For example, Toyama &
Blake [26] use 2D exemplars for people tracking. Mori & Malik[13] and Sullivan
& Carlsson [24] address the pose estimation problems as 2D template match-
ing using pre-stored exemplars upon which joint locations have been marked.
In order to deal with the complexity due to variations of pose and clothing,
Shakhnarovich et al. [19] adopt a brute-force search, usinga variant of locality
sensitive hashing for speed. Exemplar-based models are e�ective when dealing
with regular human poses. However, they cannot handle thoseposes that rarely
occur. See Fig. 5 for some examples.

There are many approaches which explicitly model the human body as an
assembly of parts. Ju et al. [7] introduce a \cardboard people" model, where
body parts are represented by a set of connected planar patches. Felzenszwalb &
Huttenlocher [2] develop a tree-structured model called pictorial structure (PS)
and applied it to 2D human pose estimation. Lee & Cohen [10] present results
on 3D pose estimation from a single image based on proposal maps, using skin
and face detection as extra cues to guide the MCMC sampling of3D models.
Ramaman & Forsyth [16] describe a self-starting tracker that tracks people by
building an appearance model from a stylized pose detected by a top-down
PS method. Sudderth et al. [23] introduce a non-parametric belief propagation
method with occlusion reasoning for hand tracking. Sigal & Black [20] use a
similar idea for pose estimation. Ren et al. [18] use bottom-up detections of
parallel lines as part hypotheses, and combine these hypotheses with various
pairwise part constraints via an integer quadratic programming. Hua et al. [5]
use bottom-up cues such as skin/face detection to guide a belief propagation
inference algorithm. There is also some work on using segmentation as a pre-
processing step [12, 14, 22].



Our work is closely related to some recent work on learning discriminative
models for localization. Ramanan & Sminchisescu [17] use a variant of condi-
tional random �elds (CRF) [8] for training localization mod els for articulated
objects, such as human �gures, horses, etc. Ramanan [15] extends their work by
iteratively building a region model based on color cues.

Our work is also related to boosting on structured outputs. Boosting was
originally proposed for classi�cation problems. Recentlypeople have adopted it
for various tasks where the outputs have certain structures(e.g., chains, trees,
graphs). For example, Torralba et al. [25] use boosted random �elds for object
detection with contextual information. Truyen et al. [27] u se a boosting algorithm
on Markov Random Fields for multilevel activity recognitio n.

Another line of research related to our work is on various extensions of tree
models in both the computer vision and the machine learning literature. Song
et al. [21] detect corner features in video sequences and model them using a de-
composable triangulated graph, where the graph structure is found by a greedy
search. Io�e & Forsyth [6] propose a sampling method based onbody part can-
didates found by a rectangle detector. Meila & Jordan [11] propose \mixtures-
of-trees" that combine multiple tree models. The parameters of such models
are learned by an EM algorithm in either maximum likelihood or Bayesian
framework. We would like to point out that although our work s eems similar
to \mixtures-of-trees", there are some important di�erenc es. Instead of using
the maximum likelihood criterion, our method optimizes a loss function that
is directly tied to inference. And our model is learned by an e�cient boosting
procedure.

3 Our Approach

Our method is a combination of tree-structured deformable models for human
pose estimation [15, 17] and boosting on MRFs [27]. The basicidea is to model
a human �gure as a weighted combination of several tree-structured deformable
models. The parameters of each tree model, and the weights ofdi�erent trees
are learned from training data in a discriminative fashion using boosting. In this
section, we �rst review deformable models for human pose estimation (Sect. 3.1),
followed by the learning and inference algorithms in such models (Sect. 3.2).
Then we introduce the boosted multiple trees (Sect. 3.3).

3.1 Deformable Model

Consider a human body model with K parts, where each part is represented
by an oriented rectangle with �xed size. We can construct an undirected graph
G = ( V; E) to represent the K parts. Each part is represented by a vertexvi 2 V
in G, and there exists an undirected edgeeij = ( vi ; vj ) 2 E between verticesvi

and vj if vi and vj has a spatial dependency. Letl i = ( x i ; yi ; � i ) be a random
variable encoding the image position and orientation of thei -th part. We denote



the con�guration of the K part model as L = ( l1; l2; :::; lK ). Given the model
parameters� , the conditional probability of L in an image I can be written as:

P r(L jI; � ) / exp

0

@
X

( i;j )2 E

 (l i � l j ) +
KX

i =1

� (l i )

1

A (1)

 (l i � l j ) corresponds to a spatial prior on the part geometry, and� (l i ) models
the local image evidence at each part located atl i . Most previous approaches
use Gaussian shape priors (l i � l j ) / N (l i � l j ; � i ; � i ) [2, 17]. However, since
we are dealing with images with a wide range of poses and aspects, Gaussian
shape priors seem too rigid. Instead we choose a spatial prior using discrete
binning (Fig. 2) similar to the one used in Ramanan [15]:

 (l i � l j ) = � T
i bin( l i � l j ) (2)

� i is a parameter that favors certain relative spatial and angular bins for
part i with respect to its parent j . This spatial prior captures more intricate
distributions than a Gaussian prior.

For the appearance model� (l i ), we follow the one used in Ramanan [15].
� (l i ) corresponds to the local image evidence for a part and is de�ned as:

� (l i ) = � T
i f i (I (l i )) (3)

f i (I (l i )) is the part-speci�c feature vector extracted from the ori ented image
patch at location l i . We use a binary vector of edges for all parts.� i is a part-
speci�c parameter that favors certain edge patterns for an oriented rectangle
patch I (l i ) in image I , wherel i de�nes the location and orientation of the patch.

To facilitate tractable learning and inference, G is usually assumed to form a
tree T = ( V; ET ) [2, 15, 17]. In particular, most work uses the kinematic tree (see
Fig. 1) as the underlying tree model.
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(a) (b)

Fig. 1. Representation of a human body. (a) human body represented as a 10-part
model; (b) corresponding kinematic tree structured model.



Fig. 2. Discrete binning for spatial prior

3.2 Learning and Inference in a Single Tree Model

Inference: Given the model parameters� = f � i ; � i g, parsing an imageI of a
human body involves computing the posterior distribution over part locations L ,
i.e., P(L jI; � ). Then the optimal part locations can be found by the maximum
a posterior estimation L MAP = arg maxL P r(L jI; � ). We use message-passing
to carry out this computation (see [15, 17] for details).

We �rst pick a node (e.g., the torso) in the tree model as the root and make
a directed graph from the tree structure. Then we pass messages \upstream"
starting from leaf nodes to their parents. The message from part i to part j is:

mi (l j ) /
X

l j

 (l i � l j )ai (l i ) (4)

ai (l i ) / � (l i )
Y

k2 kids i

mk (l i ) (5)

� (l i ) is obtained by convolving the edge image with the �lter � i . mi (l j ) can
be computed by convolvingai (l i ) with a 3D spatial �lter (with coe�cient � i )
extending the bins from Fig. 2. ai (l i ) is obtained by multiplying the response
image � (l i ) together with messages from its child nodesmk (l i ). At the root, ai

is the true conditional marginal distribution P r(l i jI ). Then starting from the
root, we pass messages \downstream" from partj to part i to compute the true
conditional marginal of each node:

P r(l i jI ) / ai (l i )
X

l j

 (l i � l j )P r(l j jI ) (6)

It can been shown that in a tree structure, the inference is exact, and con-
verges to the true conditional marginal distributions after this message-passing
scheme. Similar to previous work [15, 17], we normalize eachai to 1 for numeri-
cal stability, and keep track of the normalizing constants, which are needed for
computing the partition function of the posterior P r(L jI; � ).

Learning � ML : If we are given a set of training imagesI t where part lo-
cations L t have been labeled, one way of learning the model parameters� =
f � i ; � i g is to maximize the joint likelihood of the labeled data:

� ML = max
�

Y

t

P r(I t ; L t j� ) (7)



= max
�

Y

t

P r(L t j� )
Y

t

P r(I t jL t ; � ) (8)

� ML is also known as the maximum likelihood (ML) estimate of the model
parameter � . � ML can be found by independently �tting the ML estimate of
each factor [17].

Learning � CL : It has been noticed [17] that the ML estimate is not di-
rectly tied to the inference, and a better criterion is to optimize the posterior
distribution:

� CL = max
�

Y

t

P r(L t jI t ; � ) (9)

Finding � CL is equivalent to learning a Conditional Random Field (CRF) [8].
There are standard algorithms to learn � CL using gradient ascent methods.

3.3 Boosted Multiple Trees

There is a trade-o� between representational power and computational complex-
ity amongst di�erent forms of spatial priors. A complete gra ph captures all the
possible spatial dependencies between all the parts, but the learning and infer-
ence of such models are intractable. On the other hand, tree-structured models
are appealing due to their tractability. However, previous work [9, 21] has shown
that tree models fail to capture some additional dependencies between body
parts.

In order to alleviate the limitation of tree models, various classes of graph
structures that allow tractable learning and inference have been studied, e.g.,
mixture of trees [11], triangulated graph [21],k-fan [1], common-factor model [9].
In this section, we present our algorithm on boosting multiple trees for human
pose estimation. Our algorithm is based on AdaBoost.MRF proposed in Truyen
et al. [27] with some modi�cations. The basic idea of this method is to combine
multiple tree-structured models. Since each component of the combined model
is still a tree, learning and inference will be tractable. At the same time, since
we are using several trees, we can capture additional spatial dependencies that
are missing from a single tree model. Although our model is similar to \mixtures
of trees" at a �rst glance, there are some importance di�erences. \Mixtures of
trees" is trained by the EM algorithm to maximize the likelih ood of the training
data, while our model is trained by boosting to minimize a loss function directly
tied to inference.

Given an image I , the problem of pose estimation is to �nd the best part
labeling L � that maximize some function F (L; I ), i.e. L � = arg maxL F (L; I ).
F (L; I ) is known as the \strong learner" in the boosting literature . Given a set
of training examples (I i ; L i ); i = 1 ; 2; :::; N . F (L; I ) is found by minimizing the
following loss function:

L O =
X

i

X

L

exp
�
F (I i ; L ) � F (I i ; L i )

�
(10)



We assumeF (L; I ) is a linear combination of a set of so-called \weak learn-
ers", i.e., F (I; L ) =

P
t � t f t (L; I ). The t-th weak learner f t (L; I ) and its corre-

sponding weight � t are found by minimizing the loss function de�ned in Equa-
tion 10, i.e. (f t ; � t ) = arg max f;� L O .

Since we are interested in �nding the distribution p(L jI ), we can choose the
weak learner asf (L; I ) = log p(L jI ). To achieve computational tractability, we
assume each weak learner is de�ned on a tree model.

If we can successfully learn a set of tree-based weak learners f t (L; I ) and
their weights � t , the combination of these weak learners captures more spatial
dependencies than a single tree model. At the same, the inference in this model
is still tractable, since each component is a tree.

Optimizing L O is di�cult, Truyen et al. [27] suggest optimizing the follow ing
alternative loss function:

L H =
X

i

exp
�
� F (L i ; I i )

�
(11)

It can be shown that L H is an upper bound of the original loss function
L O , provided that we can make sure

P
j � j = 1. In Truyen et al. [27], the

requirement
P

j � j = 1 is met by scaling down each previous weak learner's

weight by a factor of 1 � � t as �
0

j  � j (1 � � t ), for j = 1 ; 2; :::; t � 1, so that
P t � 1

j =1 �
0

j + � t =
P t � 1

j =1 � j (1 � � t ) + � t = 1, since
P t � 1

j =1 � j = 1.
In practice, we �nd this trick sometimes has the undesirablee�ect of scaling

down previous weak learners to have zero weights. So we use another method
by scaling down each weak learner's weight up tot by a factor of 1=(1 + � t ),
i.e., �

0

j  � j

1+ � t
for j = 1 ; 2; :::; t. It can be easily shown that we still have

P t
j =1 �

0

j =
P t � 1

j =1
� j

1+ � t
+ � t

1+ � t
= 1, since

P t � 1
j =1 � j = 1.

In practice, the algorithm could be very slow, since learning CRF parameters
requires gradient ascent on a high dimensional space. To speed up the learning
process, we employ several simple tricks. Firstly, we learn� CL = f � i ; � i g using
the kinematic tree structure, and �x the appearance parametersf � i g during the
boosting process. The rational behind this is that multiple tree structures should
only a�ect the spatial prior, not the appearance model. Secondly, during each
boosting iteration, we learn � ML instead of � CL . Thirdly, instead of selecting
the best tree structure in each iteration, we simply sequentially select a tree from
a set of pre-speci�ed tree structures. We also allow re-selecting a tree.

4 Experiments

We test our algorithm on the people dataset used in previous work [15, 17].
This dataset contains 305 images of people in various interesting poses. First
100 images are used for training, and the remaining 205 images for testing. We
manually select three tree structures shown in Fig. 4, although it will be an
interesting future work on how to automatically learn the tr ee structure at each
iteration in an e�cient way. The results are obtained by runn ing 15 boosting



Input: i = 1 ; 2; :::; D data pairs, graphs f Gi = ( Vi ; E i )g
Output: set of trees with learned parameters and weights
Select a set of spanning treesf � g
Choose the number of boosting iterations T
Initialize f wi; 0 = 1

D g, and � 1 = 1
for each boosting round t = 1 ; 2; :::; T

Select a spanning tree� t

/* Add a weak learner */
� t = arg max �

P
i wi;t � 1 log P r � t (L i ; I i j� )

f t = log P r � t (L jI; � t )
if t > 1 then

select the step size 0< � t < 1 using line searches
end if
/* Update the strong learner */
Ft = 1

1+ � t
Ft � 1 + � t

1+ � t
f t

/* Scale down the previous learners' weights*/
� j  � j

1+ � t
, for j = 1 ; 2; :::; t

/* Re-weight training data*/
wi;t / wi;t � 1 exp(� � t f i;t )

end for
Output f � t g,f � t g and f � t g, t = 1 ; 2; :::; T

Fig. 3. Algorithm of boosted multiple trees

iterations. We visualize the posterior distribution P r(L jI ) on a 2D image using
the same technique in Ramanan [15], where the torso is represented as red,
upper-limbs as green, and lower-limbs and the head as blue. Some of the parsing
results are shown in Fig. 5. We can see that our parsing results are much clearer
than the one using the kinematic tree. In many images, the body parts are
almost clearly visible from our parsing results. In the parsing results of using the
kinematic tree, there are many white pixels, indicating high uncertainty about
body parts at those locations. But with multiple trees, most of the white pixels
are cleaned up. We can imagine if we sample the part candidates l i according to
P r(l i jI ; � ) and use them as the inputs to other pose estimation algorithms (e.g.,
Ren et al. [18]), the samples generated from our parsing results are more likely
to be the true part locations.

5 Conclusion and Future Work

We have presented a framework for modeling human �gures as a collection of
tree-structured models. This framework has the computational advantages of
previous tree-structured models used for human pose estimation. At the same



!!!! !!

!! !!

!! !!

!! !!

!!"

!!!! !!

!! !!

!! !!

!! !!

!!"

!!!! !!

!! !!

!! !!

!! !!

!!"

Fig. 4. Three tree structures used for boosting

time, it models a richer set of spatial constraints between body parts. We demon-
strate our results on a challenging dataset with substantial pose variations.

Human pose estimation is an extremely di�cult computer visi on problem.
The solution of this problem probably requires the symbiosis of various kinds
of visual cues. This paper represents our �rst step in that direction. Our frame-
work nicely solves the problem of modeling spatial dependencies between non-
connected body parts. In the future, we would like to extend our framework to
other cues (e.g., color consistency, occlusion relationships). We would also like
to combine our framework with the iterative color parsing [15].
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