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Abstract.  Tree-structured models have been widely used for human pose
estimation, in either 2D or 3D. While such models allow e cie nt learn-
ing and inference, they fail to capture additional dependencies between
body parts, other than kinematic constraints. In this paper , we consider
the use of multiple tree models, rather than a single tree moce! for hu-
man pose estimation. Our model can alleviate the limitation s of a single
tree-structured model by combining information provided a cross di erent
tree models. The parameters of each individual tree model ae trained via
standard learning algorithms in a single tree-structured m odel. Di erent
tree models are combined in a discriminative fashion by a boasting pro-
cedure. We present experimental results showing the improement of our
model over previous approaches on a very challenging datase

1 Introduction

Estimating human body poses from still images is arguably oa of the most
di cult object recognition problems in computer vision. Th e di culties of this
problem are manifold { humans are articulated objects, and @n bend and contort
their bodies into a wide variety of poses; the parts which mak up a human gure
are varied in appearance (due to clothing), which makes thendi cult to reliably
detect; and parts often have small support in the image or areoccluded. In order
to reliably interpret still images of human gures, it is lik ely that multiple cues
relating di erent parts of the gure will need to be exploite d.

Many existing approaches to this problem model the human bog as a com-
bination of rigid parts, connected together in some fashion The typical con g-
uration constraints used are kinematic constraints betwea adjacent parts, such
as torso-upper half-limb connection, or upper-lower halfimb connection (e.g.
Fig. 1). This set of constraints has a distinct computationa advantage { since
the constraints form a tree-structured model, inferring the optimal pose of the
person using this model is tractable.

However, this computational advantage comes at a cost. Simg put, the
single tree model does not adequately model the full set of tationships between
parts of the body. Relationships between parts not connecte in the kinematic
tree cannot be directly captured by this model.



In this paper, we develop a framework for modeling human gues as a col-
lection of trees. We argue that this framework has the advanage of being able to
locally capture constraints between the parts which constiute the model. With
a collection of trees, a global set of constraints can be modied. In our work,
these constraints are spatial constraints, but this framework could be extended
to other cues (e.g. color consistency, occlusion relatiohgps). We demonstrate
that the computational advantages of tree-structured modds can be kept, and
provide tractable algorithms for learning and inference inthese multiple tree
models.

The rest of this paper is organized as follows. Section 2 regivs previous work.
Section 3 gives the details of our approach. Section 4 showsme experimental
results. Section 5 concludes this paper and points to some fiure work.

2 Related Work

One of the earliest lines of research related to nding peom from images is
in the setting of detecting and tracking pedestrians. Staring with the work of
Hogg [4], there have been a lot work done in tracking with kinenatic models in
both 2D and 3D. Forsyth et al. [3] provide a survey of this work

Some of the these approaches are exemplar-based. For examplToyama &
Blake [26] use 2D exemplars for people tracking. Mori & Malik[13] and Sullivan
& Carlsson [24] address the pose estimation problems as 2Drgplate match-
ing using pre-stored exemplars upon which joint locations hve been marked.
In order to deal with the complexity due to variations of pose and clothing,
Shakhnarovich et al. [19] adopt a brute-force search, using variant of locality
sensitive hashing for speed. Exemplar-based models are etive when dealing
with regular human poses. However, they cannot handle thoseoses that rarely
occur. See Fig. 5 for some examples.

There are many approaches which explicitly model the human bdy as an
assembly of parts. Ju et al. [7] introduce a \cardboard peop" model, where
body parts are represented by a set of connected planar pates. Felzenszwalb &
Huttenlocher [2] develop a tree-structured model called pitorial structure (PS)
and applied it to 2D human pose estimation. Lee & Cohen [10] pesent results
on 3D pose estimation from a single image based on proposal 1ps, using skin
and face detection as extra cues to guide the MCMC sampling 08D models.
Ramaman & Forsyth [16] describe a self-starting tracker tha tracks people by
building an appearance model from a stylized pose detectedyba top-down
PS method. Sudderth et al. [23] introduce a non-parametric lelief propagation
method with occlusion reasoning for hand tracking. Sigal & Back [20] use a
similar idea for pose estimation. Ren et al. [18] use bottomip detections of
parallel lines as part hypotheses, and combine these hypo#ses with various
pairwise part constraints via an integer quadratic programming. Hua et al. [5]
use bottom-up cues such as skin/face detection to guide a bief propagation
inference algorithm. There is also some work on using segmition as a pre-
processing step [12, 14, 22].



Our work is closely related to some recent work on learning dicriminative
models for localization. Ramanan & Sminchisescu [17] use aaxiant of condi-
tional random elds (CRF) [8] for training localization mod els for articulated
objects, such as human gures, horses, etc. Ramanan [15] exttds their work by
iteratively building a region model based on color cues.

Our work is also related to boosting on structured outputs. Boosting was
originally proposed for classi cation problems. Recentlypeople have adopted it
for various tasks where the outputs have certain structures(e.g., chains, trees,
graphs). For example, Torralba et al. [25] use boosted randm elds for object
detection with contextual information. Truyen et al. [27] u se a boosting algorithm
on Markov Random Fields for multilevel activity recognitio n.

Another line of research related to our work is on various ex¢nsions of tree
models in both the computer vision and the machine learning iterature. Song
et al. [21] detect corner features in video sequences and meldhem using a de-
composable triangulated graph, where the graph structures found by a greedy
search. lo e & Forsyth [6] propose a sampling method based omody part can-
didates found by a rectangle detector. Meila & Jordan [11] popose \mixtures-
of-trees" that combine multiple tree models. The parametes of such models
are learned by an EM algorithm in either maximum likelihood or Bayesian
framework. We would like to point out that although our work s eems similar
to \mixtures-of-trees”, there are some important di erenc es. Instead of using
the maximum likelihood criterion, our method optimizes a loss function that
is directly tied to inference. And our model is learned by an ecient boosting
procedure.

3 Our Approach

Our method is a combination of tree-structured deformable nodels for human
pose estimation [15,17] and boosting on MRFs [27]. The basidea is to model
a human gure as a weighted combination of several tree-stratured deformable
models. The parameters of each tree model, and the weights afi erent trees
are learned from training data in a discriminative fashion using boosting. In this
section, we rst review deformable models for human pose eBhation (Sect. 3.1),
followed by the learning and inference algorithms in such mdels (Sect. 3.2).
Then we introduce the boosted multiple trees (Sect. 3.3).

3.1 Deformable Model

Consider a human body model with K parts, where each part is represented
by an oriented rectangle with xed size. We can construct an wndirected graph
G =(V;E) to represent the K parts. Each part is represented by a vertexv; 2 V
in G, and there exists an undirected edges; = (Vvi;vj) 2 E between verticesy,
and v; if vi and v; has a spatial dependency. Let; = (x;;yi; i) be a random
variable encoding the image position and orientation of thei-th part. We denote



the con guration of the K part model asL = (l3;l2;:::; 1k ). Given the model
parameters , the conditional probability of L in an imagel can be written as:

0 1

X X
Pr(Ljl; )/ exp@ (i 1)+ (1A (1)
(i )2E i=1

(li 1;) corresponds to a spatial prior on the part geometry, and (I;) models
the local image evidence at each part located at;. Most previous approaches
use Gaussian shape priors (I; ;) /N (i Ij; i; i) [2,17]. However, since
we are dealing with images with a wide range of poses and aspsg Gaussian
shape priors seem too rigid. Instead we choose a spatial priaising discrete
binning (Fig. 2) similar to the one used in Ramanan [15]:

(i )= Tbin(li 1) 2

i Is a parameter that favors certain relative spatial and anguar bins for
part i with respect to its parent j. This spatial prior captures more intricate
distributions than a Gaussian prior.

For the appearance model (l;), we follow the one used in Ramanan [15].
(I}) corresponds to the local image evidence for a part and is deed as:

()= fi( 1) 3

fi(1(l;)) is the part-speci c feature vector extracted from the ori ented image
patch at location I;. We use a binary vector of edges for all parts. ; is a part-
speci ¢ parameter that favors certain edge patterns for an giented rectangle
patch I (I;) in image |, wherel; de nes the location and orientation of the patch.

To facilitate tractable learning and inference, G is usually assumed to form a
tree T = (V;Et) [2,15,17]. In particular, most work uses the kinematic tree (see
Fig. 1) as the underlying tree model.
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Fig. 1. Representation of a human body. (a) human body represented as a 10-part
model; (b) corresponding kinematic tree structured model.
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Fig. 2. Discrete binning for spatial prior

3.2 Learning and Inference in a Single Tree Model

Inference: Given the model parameters = f ;; g, parsing an imagel of a
human body involves computing the posterior distribution over part locations L,
i.e., P(Ljl; ). Then the optimal part locations can be found by the maximum
a posterior estimation Lyap = argmax Pr(Ljl; ). We use message-passing
to carry out this computation (see [15, 17] for details).

We rst pick a node (e.g., the torso) in the tree model as the raot and make
a directed graph from the tree structure. Then we pass messa&s \upstream"
starting from leaf nodes to their parents. The message from @rt i to part j is:

X
mi(lj) / (i 1)aih) 4)
lj

Y
ai(h)y /7 (I m(li) ()

k2 kids

(Ii) is obtained by convolving the edge image with the lter ;. m;(l;) can
be computed by convolving a; (l;) with a 3D spatial lter (with coe cient i)
extending the bins from Fig. 2. a(l;) is obtained by multiplying the response
image (l;) together with messages from its child nodesn(l;). At the root, &
is the true conditional marginal distribution Pr(l;jjl). Then starting from the
root, we pass messages \downstream" from parj to part i to compute the true
conditional marginal of each node:

X
Prliji) / a(li) (i 1P (6)
lj
It can been shown that in a tree structure, the inference is eact, and con-
verges to the true conditional marginal distributions after this message-passing
scheme. Similar to previous work [15, 17], we normalize eadh to 1 for numeri-
cal stability, and keep track of the normalizing constants, which are needed for
computing the partition function of the posterior Pr(Ljl; ).
Learning w. : If we are given a set of training imagesl ' where part lo-
cations L' have been labeled, one way of learning the model parameters =
f i; jgis to maximize the joint likelihood of the labeled data:

Y
me =max  Pr(I%LY ) (7)
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=max Pr(LY ) Pr@tLt: ) (8)
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mL is also known as the maximum likelihood (ML) estimate of the nodel
parameter . . can be found by independently tting the ML estimate of
each factor [17].

Learning ¢ : It has been noticed [17] that the ML estimate is not di-
rectly tied to the inference, and a better criterion is to optimize the posterior
distribution:

Y
cL =max  Pr(LYjlY; ) 9)
t

Finding ¢ is equivalent to learning a Conditional Random Field (CRF) [8].
There are standard algorithms to learn ¢, using gradient ascent methods.

3.3 Boosted Multiple Trees

There is a trade-0 between representational power and comptational complex-
ity amongst di erent forms of spatial priors. A complete graph captures all the
possible spatial dependencies between all the parts, but # learning and infer-
ence of such models are intractable. On the other hand, trestructured models
are appealing due to their tractability. However, previous work [9, 21] has shown
that tree models fail to capture some additional dependenas between body
parts.

In order to alleviate the limitation of tree models, various classes of graph
structures that allow tractable learning and inference hawe been studied, e.g.,
mixture of trees [11], triangulated graph [21],k-fan [1], common-factor model [9].
In this section, we present our algorithm on boosting multiple trees for human
pose estimation. Our algorithm is based on AdaBoost.MRF pr@osed in Truyen
et al. [27] with some modi cations. The basic idea of this mehod is to combine
multiple tree-structured models. Since each component oftte combined model
is still a tree, learning and inference will be tractable. At the same time, since
we are using several trees, we can capture additional spafi@ependencies that
are missing from a single tree model. Although our model is siilar to \mixtures
of trees" at a rst glance, there are some importance di ererces. \Mixtures of
trees" is trained by the EM algorithm to maximize the likelih ood of the training
data, while our model is trained by boosting to minimize a los function directly
tied to inference.

Given an imagel, the problem of pose estimation is to nd the best part
labeling L that maximize some function F(L;Il), i.e. L = argmax_ F(L;1).
F(L;1) is known as the \strong learner” in the boosting literature. Given a set
of training examples (';L');i = 1;2;=;N. F(L;1) is found by minimizing the
following loss function:

X X , o
Lo = exp F(I';L) F(@';L"Y) (10)
i L



We assumeF (L; |3) is a linear combination of a set of so-called \weak learn-
ers",ie., F(I;L)= | f(L;1). The t-th weak learnerf(L;1 ) and its corre-
sponding weight ; are found by minimizing the loss function de ned in Equa-
tion 10, i.e. (ft; ) =argmaxs Lo.

Since we are interested in nding the distribution p(Ljl ), we can choose the
weak learner asf (L;1) = log p(Ljl). To achieve computational tractability, we
assume each weak learner is de ned on a tree model.

If we can successfully learn a set of tree-based weak learsefr;(L;1) and
their weights ¢, the combination of these weak learners captures more spati
dependencies than a single tree model. At the same, the infence in this model
is still tractable, since each component is a tree.

Optimizing Lo is di cult, Truyen et al. [27] suggest optimizing the follow ing
alternative loss function:

X o
Ly = exp F(L;1") (11)
I

It can be shown that Ly is an upper bound of the original loss function
Lo, providegsthat we can make sure ; ; = 1. In Truyen et al. [27], the
requirement ; j = 1 is met by scaling down each previous weak learner's
weight by a factor of 1 t as f i1 1), forj =1;2;:5t 1, so that
Pia o, P 1 O+ (=1,since .} =1

=1 t —1 i t t J j=1 :

In practice, we nd this trick sometimes has the undesirablee ect of scaling
down previous weak learners to have zero weights. So we useaher method
by scallng down each weak Iearners weight up ta by a factor of 1=(1 + ),

|Pe i Iﬂ> for j = 1;2;::;t. It can be easily shown that we still have
t o _ t 1 i t 1 —
e —1 since ;_; j =1

In practlce the algorithm could be very slow, smce learniy CRF parameters
requires gradient ascent on a high dimensional space. To spé up the learning
process, we employ several simple tricks. Firstly, we learn ¢, = f ; ;g using
the kinematic tree structure, and x the appearance parametersf ;g during the
boosting process. The rational behind this is that multiple tree structures should
only a ect the spatial prior, not the appearance model. Secadly, during each
boosting iteration, we learn . instead of ¢, . Thirdly, instead of selecting
the best tree structure in each iteration, we simply sequenilly select a tree from
a set of pre-speci ed tree structures. We also allow re-setting a tree.

4 Experiments

We test our algorithm on the people dataset used in previous wrk [15,17].
This dataset contains 305 images of people in various intesting poses. First
100 images are used for training, and the remaining 205 imagéor testing. We
manually select three tree structures shown in Fig. 4, althaigh it will be an
interesting future work on how to automatically learn the tr ee structure at each
iteration in an e cient way. The results are obtained by runn ing 15 boosting



Input: i =1;2;::;D data pairs, graphs fG; = (Vi;Ei)g
Output:  set of trees with learned parameters and weights
Select a set of spanning treesf g
Choose the number of boosting iterations T
Initialize fwio= 2g,and 1=1
for each boosting roundt =1;2;:::;T

Select a spanning tree

[* Add a weak Igarner */

t = arg max i Wit 1logPr  (Lislij )
ft =log Pr . (Ljl; )
if t> 1then
select the step size 0< < 1 using line searches
end if

[* Update the strong learner */
Fe = 1+1t|:t 1+ 1+ttft
[* Scale down the previous learners' weights*/
i 1Tj—t,forjzl;z;:::;t
[* Re-weight training data*/
Wir / wix 1exp( fit)
end for
Output f +g,f tgandf g, t=1;2;:5T

Fig. 3. Algorithm of boosted multiple trees

iterations. We visualize the posterior distribution Pr(Ljl) on a 2D image using
the same technique in Ramanan [15], where the torso is represted as red,
upper-limbs as green, and lower-limbs and the head as blue ohe of the parsing
results are shown in Fig. 5. We can see that our parsing resutare much clearer
than the one using the kinematic tree. In many images, the bog parts are

almost clearly visible from our parsing results. In the pardng results of using the
kinematic tree, there are many white pixels, indicating high uncertainty about

body parts at those locations. But with multiple trees, most of the white pixels

are cleaned up. We can imagine if we sample the part candidasd; according to
Pr(l;jl; ) and use them as the inputs to other pose estimation algoritims (e.g.,
Ren et al. [18]), the samples generated from our parsing rets are more likely

to be the true part locations.

5 Conclusion and Future Work

We have presented a framework for modeling human gures as aaddlection of
tree-structured models. This framework has the computaticnal advantages of
previous tree-structured models used for human pose estinian. At the same



Fig.4. Three tree structures used for boosting

time, it models a richer set of spatial constraints between lody parts. We demon-
strate our results on a challenging dataset with substantid pose variations.

Human pose estimation is an extremely di cult computer visi on problem.
The solution of this problem probably requires the symbioss of various kinds
of visual cues. This paper represents our rst step in that drection. Our frame-
work nicely solves the problem of modeling spatial dependegies between non-
connected body parts. In the future, we would like to extend aur framework to
other cues (e.g., color consistency, occlusion relationghs). We would also like
to combine our framework with the iterative color parsing [15].
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