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Abstract

In this paper we show how a segmentation as preprocessing
paradigm can be used to improve the ef ciency and accu-
racy of model search in an image. We operationalize this
idea using an over-segmentation of an image into superpix-
els. The problem domain we explore is human body pose *
estimation from still images. The superpixels prove useful
in two ways. First, we restrict the joint positions in our &
human body model to lie at centers of superpixels, which () ’ (b)
reduces the size of the model search space. In addition, ac-
curate support masks for computing features on half-limbs
of the body model are obtained by using agglomerations of Figure 1. (a) Input image of 160K pixels. (b) An over-
superpixels as half-limb segments. We present results on egmentation of 933 superpixels. We approximate the posi-
challenging dataset of people in sports news images. tion of each joint of the human gure as a superpixel center,
and each half-limb as being composed of superpixels.

1. Introduction

. . . so the reductiontbls,  1000superpixels provides a clear
In this paper we show howsegmentation as preprocessing

, ; , computational improvement.
paradigm can be used to improve the ef ciency and accu- In addition to reducing the state space of search, the
racy of model search in an image. We use the superpixels . . . '
. i . o - “superpixels can provide accuracy improvements by de n-
of Ren and Malik [10] to operationalize this idea, and test it Perp b y Imp y

inth blem d i of h bod timation f ing support masks on which to compute features. For the
Isr:ill i?ngrg(])esem omain ot human body pose estimation from problem we are interested in, human body pose estimation,

. . N . model-based approaches typically de ne a particular shape
Consider the image in Figure 1(a). Given the task of (g, a5 rectangle in 2D) of half-limb on which to compute
localizing the joint positions of the human gure in this im-

. h based icular bod del | image features. Instead we use the image boundaries given
age, a naive search based on a particular body model wou y the superpixels to de ne support masks for half-limbs.

r_equire examining every pixel as a putative left wrist loca- These more accurate support masks that adhere closely to
tion, Ieft_elbow location, and so forth. If the body model has image boundaries result in features that include less back-
a complicated structure (the model we use @éN &) com- ground clutter.

plexity, Wi.th N pixels i_n .the image), the search procedure_is The structure of this paper is as follows. We start by re-
computationally prohibitive. Instead, we use segmentatio viewing previous work in Section 2. Section 3 describes

asa pre-processing step to limit th(_e §ize qf the state SPACE r human body model based on the superpixel representa-
which we must search over for each joint. Figure 1(b) shows tion. Section 4 describes our inference procedure. Results

an example over-segmentation into superpixels. In our aP-are presented in Section 5, and we conclude in Section 6.
proach we examine every superpixel center, rather than ev-

ery pixel, as a putative joint position. The images we con-
sider in our experiments are lardé,= 150 500K pixels, 2. Related Work

This work is supported by grants from NSERC (RGPIN-31223)) a ~ SOme of the ear”es_t res.ear(_:h related to the prOble.m of hu-
the SFU President's Research Fund. man body pose estimation is the pedestrian tracking work



of Hogg [3]. A vast quantity of work continued in this vein, A few recent works are of particular relevance to this pa-
using high degree-of-freedom 3D models of people, render-per. The inference algorithm we will use to sample the dis-
ing them in the image plane, and comparing them with im- tribution over human body poses is a Markov Chain Monte
age data. Gauvrila [2] provides a survey of this work. These Carlo (MCMC) algorithm. Lee and Cohen [5] presented
approaches typically require a hand-initialized rst fram  impressive results on pose estimation ugngposal maps
and the large number of parameters in their models lead tobased on face and skin detection, to guide a MCMC sam-
dif cult tracking problems in high dimensional spaces. pler to promising regions of the image. Tu et al. [20] per-

The complexities in 3D model-based tracking have led form object recognition and segmentation simultaneously,
researchers to pose the problem as one of matching to store@0Mmbining face and letter detectors with segmentation in a
2D exemplars. Toyama and Blake [19] used exemplars forDD-MCMC framework. Sigal et al. [14] and Sudderth et
tracking people as 2D edge maps. Mori and Malik [6], @l [16] track people and hands respectively, udmgse-
and Sullivan and Carlsson [17] directly address the prob- limbed modelsmodels consisting in a collection of loosely
lem of pose estimation. They stored sets of 2D exemplarsconnected geometric primitives, and use non-parametric be
upon which joint locations have been marked. Joint loca- lief propagation to perform inference. Sudderth et al. duil
tions are transferred to novel images using shape matching@cclusion reasoning into their hand model. Sigal et al. use
Shakhnarovich et al. [12] address variation in pose and ap-shouterdo focus the attention of the inference procedure.
pearance in exemplar matching through brute force, using The idea of using an over-segmentation as support masks
a variation of locality sensitive hashing for speed to match on which to compute features has been developed previ-
upper body con gurations of standing, front facing people ously by Tao et al. [18] who used colour segmentation as
in background subtracted video sequences. pre-processing for stereo matching. The superpixels we use

Another family of approaches use a 2D model to nd in this paper are optained via the Norm.alized Cuts algo-
or track people. The approach we describe in this paperithm [13], and at this scale (1000 superpixels) provide bet
falls into this category. Felzenswalb and Huttenlocher [1] €7 Support masks than colour segmentation, particularly i

score rectangles using either a xed clothing model or sil- the presence of texture.
houettes from background subtraction of video sequences
and then quickly nd an optimal con guration using the 3. Body Model
distance transform to perform dynamic programming on
the canonical tree model. Morris and Rehg [8] use a 2D We use a 2D human body model that consists in 8 half-limbs
Scaled Prismatic Model to track people and avoid the sin- (upper and lower arms and legs), a torso, and two occlusion
gularities associated with some 3d models. A subset ofvariables describing relative depth orderings of the arms,
these 2D approaches apply a simple low-level detector tolegs and torso. This model is similar in spirit to the com-
produce a set of candidate parts, and then a top-down promonly used “cardboard person” models (e.g.[1, 9]) in which
cedure makes inferences about the parts and nds the besthe torso and each half-limb is represented by a pre-de ned
assembly. Song et al. [15] detect corner features in video se 2D primitive (typically a rectangle), and the kinematics of
quences and model their joint statistics using tree-strect  the body are modelled as a collection of 2D angles formed
models. loffe and Forsyth [4] use a simple rectangle de- at links between these primitives.
tector to nd candidates and assemble them by sampling  There are two differences between our model and these
based on kinematic constraints. Ramanan and Forsyth [Sothers. First, the half-limbs are restricted to respecsfie
describe a self-starting tracker that builds an appearanceial constraints imposed by the reduction of the original im
model for people given salient rectangular primitives ex- age to a collection of superpixels. The endpoints of the half
tracted from video sequences. limbs (i.e. the positions of the joints: elbows, shoulders,
One dif culty with the tree-based body models that are etc.) are restricted to lie in the center of one of tiig
often used to reduce the complexity of search is that theresuperpixels. This restriction drastically reduces thecea
is no direct mechanism for preventing the reuse of image space of possible half-limb&N( = 150K 300K pixels
pixels. An arm with a good low-level score could be la- as endpointstdls, 1000 while yielding only a minimal
beled as both the right and left arm. Felzenswalb and Hut-amount of lost precision in spatial location of the half-isn
tenlocher [1] address this by sampling from the tree-basedFurther, each half-limb is formed as an agglomeration of su-
distribution over body poses, which is computed extremely perpixels. In addition to forming more complex shapes than
ef ciently using the distance transform, and then evaluat- would be possible with any particular 2D primitive, this al-
ing these samples using a more complicated model. In thislows for ef cient computation of features for half-limbs by
work, we instead use a model that incorporates occlusioncombining features computed on a per superpixel basis.
reasoning directly and use superpixels to reduce the com- The second difference is the addition of the two oc-
putational dif culties in model search. clusion variables, one representing the depth ordering of



the left and right arms with respect to each other and theprise the body to be connected are represented(iX ):

torso, and one the depth ordering of the left and right legs.

These occlusion variables allow half-limbs to claim exclu- (X)) /! k(Xwai;Xna)  k(Xrua;Xria)

sive ownership over regions of the image, avoiding the dou- k(X X)) kXrw s X)) ke (X) (2)

ble counting of image evidence that often occurs in models

that lack such information (such as tree-structured mydels where

Further, they allow us to predict appearance of partially oc 1

cluded limbs. k(Xi;Xj) =
Given the locations of the half-limbs, and the depth or-

dering in the occlusion variables, we render the upper bodyA pair of half-limbs are de ned to be adjacent if they share

and, separately, lower body in a back-to-front ordering to an elbow/knee superpixel.i (X ) 2 f 0; 1g enforces con-

determine which superpixels are claimed by each half-limb. straints on the size and shape of the torso induced by the
More precisely, a model stak€ is de ned as follows: upper limbs of stat& .

The other distributiongy (X ), pa(X), andpy (X), are
X = (Xwa ; Xia s Xrua s Xria s Xt 5 X5 Xewr s X hu; ) de ned in the following subsectior?S.

if Xi;X; adjacent
0 otherwise

3)

where X, represents the left upper arr{,; the right .
lower leg, and so forth. EacK; takes a value which 3.1. Half-limb Model
is an index into the set of all possible half-limbs; 2 In building our set ofS half-limbs, we would like to con-
f1;2;::::Sg. The number of possible half-limiSs NSZP, sider elongated segments, composed of superpixels, of vari
whereN, is the number of superpixels. The details of con- 0us widths around a bone-line connecting every nearby pair
structing the set of all possible half-limbs are presented b  of superpixels. We model a half-limb as a connected region
low (Section 3.1); essentially half-limbs of a few widths bounded by a pair of polylines and the line segments con-
are placed between all pairs of superpixels within some necting their endpoints. This modelling assumption is mo-
bounded distance of each other. Note that the torso is detivated by the available spatial structure of the supetpixe
ned implicitly in this representation, based on the shauld ~ segmentation, as described below.
and hip locations of the upper limbs. The cues which we use when considering half-limbs in
The variablesh, and h, represent the upper body isolation, without any global assembly constraints, aje (1
(arms and torso) and lower body (legs) occlusion amount of edge energy on, and (2) overall shape of the
states respectively. h, can take values representing boundary of the half-limb. We desire a representation for
one of four depth orderings: left-arm/right-arm/torso, these constraints which can be ef ciently computed given
left-arm/torso/right-arm,  right-arm/left-arm/torso,igt- cues de ned based on superpixels. As these cues are de-
arm/torso/left-arm (both arms may not be behind torso, and ned on the boundaries of segments, we construct a super-
an upper arm cannot occlude its adjacent lower ahpgan ~ Pixel dual graph on which to compute these cues. The su-
take two values, representing left-leg/right-leg and tigh Pperpixel dual graph, shown in Figure 2(b) is constructed by

leg/left-leg depth orderings. taking a polygonal approximation to the original superpixe
We will denote byU the upper body variableg) = boundaries (Figure 2(a)) and creating a vertex where 3 or
f X ua ; Xia : X rua ; X1ia ; hug, andL the lower body vari- ~ more superpixels meet, and an edge between vertices which
ablesL = Xy ; X s Xeu s Xen s hig. are endpoints of a side of a superpixel.
A particular model con guration is deemed plausible if: Image edge energy and graph edge orientation are as-
1. The half-limbs form a kinematically valid human Sociated with each graph edge in this dual graph. Given
body. a half-limb X; bounded by a pair of polyline paths in this
2. Each individual half-limb chosen looks like a half- dual graph, we de ne a “limb-ness” potential for the half-
limb itself. limb based on the average amount of edge energaver-
3. There is symmetry in appearance of corresponding@de amount of orientation variatian, and total length of
left and right half-limbs. these bounding patts
4. Adjacent half-limbs and corresponding left and right e )2 L )2 Lo o2
half-limbs have similar widths. (X)=ez2 " ¢ et ez2? ' ° (4)
As such, we de ne a distribution over model statess
a product of four distributions: Considering half-limbs bounded by all possible paths
through the dual graph would be a daunting and unneces-
p(X) = p(X) pi(X) pa(X) pw(X) (1) sary task. Instead, between a pair of dual graph vertices we

restrict ourselves to the path which is shortest, usingggtta
Kinematic constraints forcing the half-limbs that com- line distance edge costs. For a particular pair of supelgpixe



@) (b) () (d)

Figure 2: Finding half-limbs. (a) Superpixel centers andrmtaries. (b) Superpixel dual graph, red dot denote veitice
black lines edges. (c) Given two superpixels, shown withktfilue line between their centers, shortest paths betweah d
graph vertices near each superpixel are considered. (dpsechhalf-limb is shown outlined in gray. A small collectioh
half-limbs at various widths is kept for each pair of supeeis.

used as the endpoints of the bone-line we only consider duafor corresponding left and right body parts is de ned based
graph vertices within a small range of allowable widths near on this assumption.
these superpixels as start and end points of the polylines We measure the appearance similarity between a pair of
forming the half-limb boundaries. These shortest paths arehalf-limbs by comparing the colour histograms of the two
precomputed using Dijkstra's algorithm. We also precom- half-limbs. We precompute a vector quantization of the
pute edge energy, orientation, and length counts alongsedgecolours of superpixels so that these histograms can be ef-
in the dual graph, and hence can ef ciently evaluate the po- ciently computed for any half-limb. Each superpixel in an
tential () for any half-limb. Figures 2(c) and (d) illustrate  input image is given the mean colour, represented in LAB
this process. We keep the best half-limbs, those with thecolour space, of the pixels inside it. We then run kmeans
highest half-limb potential, between a pair of superpixels on the mean superpixel colours. The appearance of a su-
at a few different widths. perpixeli is represented by its vector quantization lafyel
Note that we have not yet taken into account occlusion keeping the size (number of pixels)of each superpixel.
reasoning. When evaluating the limb-ness potential for a  The occlusion reasoning described above is used to ob-
half-limb, we discount edges that are occluded by anothertain S;, the set of superpixels comprising half-liny. A
half-limb and replace their edge energy and orientation var colour histogranC; is then ef ciently computed using the
ation counts by outlier cosB3e andD,,. If ! ; is the fraction precomputed superpixel colour labels and sizes.jThbin
of half-limb X; occluded by other half-limbs in the upperor of C; is:

lower body, the limb potential is computed using: . X
y b P ? Ci(i)= 3 (®)
eI:(]_ !i) & +!iD¢ (5) k2Si;ck=j
o=(1 !i) 6+!D, (6) We compare the colour histograms of the two segments

using the earth mover's distance (EMD), with the imple-
where& and6; are the average energy and orientation de- mentation provided by Rubner et al. [11]. The appearance
viation on the unoccluded portions of the limb respectively consistency potential on a pair of limbs is a function of the
The distributionp (X ) is de ned as the product of these EMD between the colour histograms of the limbs, along
individual limb potentials, in addition to a similar potéait with an outlier cosD . for the occluded portion of the limbs.

for the torso (X): 1 ) e D)2
t(X) . (CiiC) = o (@ 1) EMD (CiCy)r 1y Do) )
pP(X) /1 (X) 1(Xi) (7) Following the notation above,; = max(!i;!;) is the
i2Half  limbs larger of the fractions of the two segments lost under occlu-
sion.

This same () is applied to upper and lower arms and

legs to form the appearance distributioy(X ):
We assume that the human gures in our images wear cloth- u _ . .
ing that is symmetric in appearance. For example, the "}(U) = alCuaiCua)  a(CiaiCra) (10)
colour of the left upper arm should be the same as that of all) = a(Cw:;Cu) alCw;Cu) (11)
the right upper arm. The appearance consistency potential pa(X) / N()) L(L) (12)

3.2. Appearance Consistency



3.3. Width Consistency p(X ) are obtained by running kmeans on the set of 2d joint

We also assume that the widths of adjacent and left/right positions of the set of samples.

pairs of limbs are similar. A potential that measures the  Figure 3 shows quantitative results, histograms of pixel

similarity in width of the adjacent ends of upper and lower error in joint positions. The scale of the people in the test

arms and legs (width at elbow or knee), as well as widths images is quite large - the average height is approximately
of corresponding left/right half-limbs is also includechi¥ 400 pixels. Figures 3(a-c) show results using the entite tes

potential (), and the distributiom,, (X ), take a similar ~ set. There are a few very large errors in these histograms.

form to those previously described. However, we are able to detect when such dif culties have
occurred. Figures 3(d-f) show results using only the top 15
4. Inference images from our test set, as sorted by unnormalixed)

Even with the reduction in state space achieved by means oialues. Further, joint localization errors are broken down
the superpixels, the nal inference task using our model is into upper and lower body errors. Lower body joints (hips,
still a dif cult one. Exact inference in this model wouldlsti ~ knees, ankles) are reasonably well localized, while upper
requireO(pr) time. Even thougNs, << N , the number body joints (shoulders, elbows, wrists) prove extremely di
of pixels in the image, this is still intractable. cult to nd. These quantitative results, while by no means
Instead, we employ Gibbs sampling, a Markov Chain accurate, are compare favourably to the state of the art on
Monte Carlo algorithm, to obtain samples from the distri- this extremely dif cult problem.
bution p(X ). An important detail is that the Gibbs sam-  In Figure 4 we show qualitative results on images from
pling procedure operates on joint positions rather than theour test set. The top row of each set shows input im-
half-limb labels &), since the kinematic constraimigare ~ ages overlayed with superpixel boundaries, followed by re-
brittle and assign O probability to any disconnected body covered human body poses, and segmentation masks cor-
pose. responding to the half-limbs. The rst ve input images
We initialize our model to a neutral standing pose in the (top row) are the top ve matches from our test set cho-
center of the image. At each step of the algorithm we choosesen in a principled fashion (sortga{X) values), while
a particular jointl, or occlusion labellf, orh|) atrandom.  the remaining examples are of the usual judiciously cho-
We then set the value of the occlusion label or limbg) ~ sen variety. In order to shed more light on the quantita-
adjacent to the joinfx by sampling from the conditional tive results, average joint errors in the top ve images are
distributionp(h;jX ) or p(X«jX), whereX, denotes the  42:4;27:7,57:3; 37:4; 25:4, signi cant error measurements
remaining variables with those adjacent to jaipt or the  for qualitatively reasonable results.
relevant occlusion variable, removed. Computing this con- . .
ditional distribution in our model is relatively simple, én 6. Discussion

involves setting the position afx to be any ofNsp 10- | this paper we have shown how segmentation can be used
cations, and re-evaluating upper or lower body potentials 54 5 preprocessing step to improve the ef ciency and accu-
for the ha_lf-limbs that are adjacent at that superpixell. Our racy of model search in an image. We have demonstrated
MATLAB implementation takes about 1 second per itera- 1,4 advantages of this approach — reducing the state space
tion of G_|bbs sampling on a 2GHz AMD Opteron 246. Note ot model search and de ning accurate support masks on
that the ideas of shouters [14] or proposal maps [5] could be\yhich to compute features. Using these ideas, we have
_used in conjunction with the superpixel representation for gy, on promising results on the dif cult task of human body
improved performance. pose estimation in still images.
5. Results The results pr_esented in.this paper are comparablg in
quality to those in our previous work [7]. In our previ-
The dataset we use is a collection of sports news pho-gys method, an initial coarse segmentation followed by a
tographs of baseball players. This dataset is very challeng ¢|assi er was used to provide candidate half-limbs. An ad-
ing, with dramatic variations in pose and clothing, and sig- hoc assembly method that required solving a constraint sat-
ni cant background clutter. Four images from our dataset jsfaction problem was then used to assemble these candi-
were used to set the free parameters in our body model, an@ate half-limbs. However, this CSP step was brittle, re-
53 images were used for testing. For each input image, weguiring that at least 3 half-limbs were found by the ini-
compute superpixelsand colour, edge energy, orientation, tja] segmentation-classi cation stage, and caused umreco
and length cues upon them in a pre-processing step. Theyraple errors.
Gibbs sampling algorithm is then run 10 times, with 200 | contrast, the method presented in this paper performs
sampling iterations per run. Modes from the distribution jnference over superpixel locations using a body model.
1sample MATLAB code for computing the superpixels is avddadt: This idea seems generally useful, and we believe it could
http://www.cs.sfu.ca/"mori/research/superpixels be applied to other object recognition problems.
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Figure 3: Histograms over pixel error in joint positions-djaHistograms computed using all images in our test sef) (d-
Histograms using best 15 matching images in dataset (Higine®rmalized(X)). (a,d)/(b,e) Error in lower/upper body
joint positions for overall best con guration out of top 1(uates ofp(X ). (c,f) Average error over all joints.
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Figure 4: Two sets of sample results. In each set, top row slimgput image with overlayed superpixel boundaries, fodw
by recovered pose (upper arms in red, lower in blue, upperitegreen, lower in purple), and segmentation associatéd wi
each half-limb.



